Strategies of Monitoring Aerosol Indirect Effect from Space

Qingyuan Han, Joyce Chou, and Ronald Welch

University of Alabama in Huntsville

Presented at the 22nd CERES Science Meeting, Sep 20-22, 2000, Huntsville, AL

What is the viable strategy for determining the indirect aerosol forcing and its changing by satellite observations?

- Evidence and future research recommended by NRC 1996
- Progress since NRC 1996
 - New evidences
 - New observations
- Strategies

Evidences and Future Research Recommended by NRC 1996

• Evidences of Aerosol Indirect Effect

- Increased N_{aer} leads to increased N_{cld}
- Decreased droplet size leads to increased albedo (Ship tracks)

Recommended process research

• Remote sensing the relation between cloud albedo and cloud droplet size distribution

Progress since NRC 1996 – New Evidences

Increased N_{aer} →increased cloud albedo (Kaufman and Fraser, 1997)

Increased aerosol may decrease *LWP*, τ , & f (Ackerman et al., 2000)

Progress since NRC 1996 - New (and Old) Evidences

Aerosol inhibits precipitation (Rosenfeld 1999)

Fig. 1. Average rural/urban ratios of summer rainfall in St. Louis area, 1949–1968.

Urban aerosol increased rainfall, rain days (e.g., Ashworth, 1929; Kratzer, 1956; Stout, 1962; Lendsberg, 1956; Hobbs et al., 1970, Changnon et al., 1971, Mather, 1991).

Field Experiments

Field Experiment: ACE-2 (6/16-7/24, 1997) (Brenguier, 2000)

Correlation between cloud albedo and droplet size (Han et al., 1998a)

Cloud column number concentration N_c (Han et al., 1998b)

Global survey of cloud column susceptibility (Han et al., 2000)

Global survey of cloud fraction susceptibility $\Delta f/\Delta N_c$ (Han et al., 2000)

Cloud cover may be increased or decreased for increasing cloud column number concentrations

Strategies

What do we need for monitoring the aerosol indirect effect from space?

$$\Delta \alpha_{cld}/\Delta N_{aer};$$
 $\Delta f/\Delta N_{aer};$ $\Delta R/\Delta N_{aer}$

• Approach I: Direct correlations between instantaneous cloud properties and neighboring aerosol properties (Snapshot Approach)

Problem: 1) No temporal interactions between aerosols and clouds

- 2) Only data with coexistence of aerosol and cloud can be used
- Approach II: Correlating cloud and aerosol properties in the same region during a month.

e.g.,
$$\Delta \alpha_{cld}/\Delta N_{aer} = \Delta \alpha_{cld}/\Delta N_c * \Delta N_c/\Delta N_{aer} = S_c * \Delta N_c/\Delta n_{aer}$$

$$\Delta f/\Delta N_{aer} = \Delta f//\Delta N_c * \Delta N_c/\Delta N_{aer}$$

With N_c and S_c retrieved, the focus is on the relation of ΔN_c and ΔN_{aer}

Approach I: Direct correlations between cloud & aerosol properties

20

23

26

29 (μm)

ICE CLOUD

- 1) No simultaneous retrieval of cloud AND aerosol properties for the same pixel
- 2) At cloud edges, which is cloud, which is aerosol?

0.03 0.06 0.09 0.12 0.15

Re

- 3) When cloud and aerosol are horizontally separated, they may not interact
- 4) What is the wind direction? Which side of the cloud is interacting with aerosols?
- 5) Aerosols may be not interacting with clouds at different altitudes

Cloud Column Susceptibility $S_c = \Delta \alpha / \Delta N_c$ (Apr 1987)

Approach II: Study Cloud Column Susceptibility $\Delta\alpha/\Delta N_c$ and $\Delta N_c/\Delta N_{aer}$

- 1) With cloud AND aerosol properties for the same region
- 2) Problems of cloud property change and aerosol screen are separated
- 3) Analogue to study continent-maritime cloud contrasts

Conclusions

- More complete view of the aerosol indirect effect
 - Regional studies show that the aerosol indirect effect
 - may increase or decrease cloud water and cover
 - may inhibit or promote precipitation
 - Global observations show that
 - Cloud albedo increases with increasing r_e for τ <15
 - Cloud column susceptibility may be negative
 - Cloud fractional cover may increase or decrease
- Strategies
 - Snapshot data correlation technique
 - One-month data regression technique